【题目】惠州市某学校高三年级模拟考试的数学试题是全国I卷的题型结构,其中第22、23题为选做题,考生只需从中任选一题作答.已知文科数学和理科数学的选做题题目无任何差异,该校参加模拟考试学生共1050人,其中文科学生150人,理科学生900人.在测试结束后,数学老师对该学校全体高三学生选做的22题和23题得分情况进行了统计,22题统计结果如下表1,23题统计结果如下表2.
表1
22题得分 | 0 | 3 | 5 | 8 | 10 |
理科人数 | 50 | 70 | 80 | 100 | 500 |
文科人数 | 5 | 20 | 10 | 5 | 70 |
表2
23题得分 | 0 | 3 | 5 | 8 | 10 |
理科人数 | 10 | 10 | 15 | 25 | 40 |
文科人数 | 5 | 5 | 25 | 0 | 5 |
(1)在答卷中完成如下列联表,并判断能否至少有的把握认为“选做22题或23题”与“学生的科类(文理)”有关系;
选做22题 | 选做23题 | 合计 | |
文科人数 | 110 | ||
理科人数 | 100 | ||
总计 | 1050 |
(2)在第23题得分为0的学生中,按分层抽样的方法随机抽取6人进行答疑辅导,并在辅导后从这6人中随机抽取2人进行测试,求被抽中进行测试的2名学生均为理科生的概率.
参考公式:,其中.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【题目】某种水果按照果径大小可分为四类:标准果,优质果,精品果,礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
个数 | 10 | 30 | 40 | 20 |
(1)用样本估计总体,果园老板提出两种购销方案给采购商参考:
方案1:不分类卖出,单价为20元/.
方案2:分类卖出,分类后的水果售价如下表:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
售价(元/) | 16 | 18 | 22 | 24 |
从采购商的角度考虑,应该采用哪种方案较好?并说明理由.
(2)从这100个水果中用分层抽样的方法抽取10个,再从抽取的10个水果中随机抽取3个,表示抽取到精品果的数量,求的分布列及数学期望.
【题目】已知某次考试之后,班主任从全班同学中随机抽取一个容量为8的样本,他们的数学、物理成绩(单位:分)对应如下表,对应散点图如图所示:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学成绩 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理成绩 | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
根据以上信息,则下列结论:
①根据散点图,可以判断数学成绩与物理成绩具有线性相关关系;
②根据散点图,可以判断数学成绩与物理成绩具有一次函数关系;
③从全班随机抽取2名同学(记为甲、乙),若甲同学的数学成绩为80分,乙同学的数学成绩为60分,则可以判断出甲同学的物理成绩一定比乙同学的物理成绩高;
④从全班随机抽取2名同学(记为甲、乙),若甲同学的数学成绩为80分,乙同学的数学成绩为60分,则不能判断出甲同学的物理成绩一定比乙同学的物理成绩高;
其中正确的个数是( )
A.1B.2C.3D.4
【题目】某汽车制造厂制造了某款汽车.为了了解汽车的使用情况,通过问卷的形式,随机对50名客户对该款汽车的喜爱情况进行调查,如图1是汽车使用年限的调查频率分布直方图,如表2是该50名客户对汽车的喜爱情况.
表2
不喜欢该款汽车 | 喜欢该款汽车 | 总计 | |
女士 | 11 | ||
男士 | 23 | 30 | |
总计 |
(1)将表2补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢该款汽车与性别有关;
(2)根据图中的数据,甲说:“中位数在组内”;乙说:“平均数大于中位数”;丙说:“中位数和平均数一样”,针对三位同学的说法,你认为哪种说法合理,给出说明.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |