【题目】已知函数.
(I)若曲线存在斜率为-1的切线,求实数a的取值范围;
(II)求的单调区间;
(III)设函数,求证:当时, 在上存在极小值.
【题目】已知椭圆的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆相交于两点,点关于原点的对称点为,若点总在以线段为直径的圆内,求的取值范围.
【题目】设满足以下两个条件的有穷数列, , , 为阶“期待数列”:
①;
②.
()分别写出一个单调递增的阶和阶“期待数列”.
()若某阶“期待数列”是等差数列,求该数列的通项公式.
()记阶“期待数列”的前项和为,试证: .
【题目】直线与双曲线的渐近线交于两点,设为双曲线上任一点,若为坐标原点),则下列不等式恒成立的是( )
A. B. C. D.
【题目】设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )
A. B. 9 C. 18 D. 36
【题目】设 .
(1)若直线与和和图象均相切,求直线的方程;
(2)是否存在使得按某种顺序组成等差数列?若存在,这样的有几个?若不存在,请说明理由.
【题目】已知一个动圆与两个定圆和均相切,其圆心的轨迹为曲线C.
(1) 求曲线C的方程;
(2) 过点F()做两条可相垂直的直线,设与曲线C交于A,B两点, 与曲线 C交于C,D两点,线段AC,BD分别与直线交于M,M,N两点。求证|MF|:|NF|为定值.
【题目】如图1 ,在△ABC中,AB=BC=2, ∠B=90°,D为BC边上一点,以边AC为对角线做平行四边形ADCE,沿AC将△ACE折起,使得平面ACE ⊥平面ABC,如图2.
(1)在图 2中,设M为AC的中点,求证:BM丄AE;
(2)在图2中,当DE最小时,求二面角A -DE-C的平面角.
【题目】已知,命题:对,不等式恒成立;命题,使得成立.
(1)若为真命题,求的取值范围;
(2)当时,若假, 为真,求的取值范围.
【题目】已知函数图象上一点处的切线方程为.
(1)求的值;
(2)若方程在内有两个不等实根,求的取值范围(其中
为自然对数的底).