题目内容
【题目】已知椭圆的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆相交于两点,点关于原点的对称点为,若点总在以线段为直径的圆内,求的取值范围.
【答案】(1)(2)
【解析】试题分析:(I)由题意列出方程组求出, ,由此能求出椭圆的方程.(Ⅱ)当直线的斜率不存在时, 的方程为, ,点B在椭圆内,由,得,由此利用根的判别式、韦达定理、弦长公式、由此能求出的取值范围.
试题解析:(I)解:由题意,得: 又因为
解得,所以椭圆C的方程为.
(II)当直线的斜率不存在时,由题意知的方程为x=0,
此时E,F为椭圆的上下顶点,且,
因为点总在以线段为直径的圆内,且,
所以,故点B在椭圆内.
当直线的斜率存在时,设的方程为.
由方程组得,
因为点B在椭圆内,
所以直线与椭圆C有两个公共点,即.
设,则.
设EF的中点,则,
所以.所以,
,
因为点D总在以线段EF为直径的圆内,所以对于恒成立.
所以.
化简,得,整理,得,
而(当且仅当k=0时等号成立)所以,
由m>0,得.综上,m的取值范围是.
【题目】为了响应我市“创建宜居港城,建设美丽莆田”,某环保部门开展以“关爱木兰溪,保护母亲河”为主题的环保宣传活动,将木兰溪流经市区河段分成段,并组织青年干部职工对每一段的南、北两岸进行环保综合测评,得到分值数据如下表:
南岸 | 77 | 92 | 84 | 86 | 74 | 76 | 81 | 71 | 85 | 87 |
北岸 | 72 | 87 | 78 | 83 | 83 | 85 | 75 | 89 | 90 | 95 |
(Ⅰ)记评分在以上(包括)为优良,从中任取一段,求在同一段中两岸环保评分均为优良的概率;
(Ⅱ)根据表中数据完成下面茎叶图;
(Ⅲ)分别估计两岸分值的中位数,并计算它们的平均值,试从计算结果分析两岸环保情况,哪边保护更好.
【题目】已知函数f(x)=sinωxcosωx-cos2ωx+ (ω>0),经化简后利用“五点法”画其在某一周期内的图象时,列表并填入的部分数据如下表:
x | ① |
| |||
f(x) | 0 | 1 | 0 | -1 | 0 |
(1)请直接写出①处应填的值,并求函数f(x)在区间上的值域;
(2)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面积.