【题目】数列a1,a2……an是正整数1,2,……,n的任一排列,且同时满足以下两个条件:
①a1=1;②当n≥2时,|ai-ai+1|≤2(i=1,2,…,n-1).
记这样的数列个数为f(n).
(I)写出f(2),f(3),f(4)的值;
(II)证明f(2018)不能被4整除.
【题目】已知函数f(x)= -lnx-.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:lnx≥-
(Ⅲ)判断曲线y=f(x)是否位于x轴下方,并说明理由.
【题目】已知函数f(x)=(x2-ax+a)e-x,a∈R
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(x)=f’(x),其中f’(x)为函数f(x)的导函数.判断g(x)在定义域内是否为单调函数,并说明理由.
【题目】在△ABC中,A=, =.
(Ⅰ)试求tanC的值;
(Ⅱ)若a=5,试求△ABC的面积.
【题目】已知函数f(x)=2sinxcos(x-).
(Ⅰ)求函数f(x)的最小正周期.
(Ⅱ)当x∈[0, ]时,求函数f(x)的取值范围.
【题目】已知数列{an}的前n项和为Sn,满足Sn=2an-1.(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an,求数列{bn}的前n项和Tn.
【题目】将集合M={1,2,3,...,15}表示为它的5个三元子集(三元集:含三个元素的集合)的并集,并且这些三元子集的元素之和都相等,则每个三元集的元素之和为________;请写出满足上述条件的集合M的5个三元子集__________(只写出一组)
【题目】袋子里有编号为的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.
甲说:“我无法确定.”
乙说:“我也无法确定.”
甲听完乙的回答以后,甲又说:“我可以确定了.”
根据以上信息, 你可以推断出抽取的两球中
A. 一定有3号球 B. 一定没有3号球 C. 可能有5号球 D. 可能有6号球
【题目】已知椭圆的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆相交于两点,点关于原点的对称点为,若点总在以线段为直径的圆内,求的取值范围.
【题目】已知函数.
(I)若曲线存在斜率为-1的切线,求实数a的取值范围;
(II)求的单调区间;
(III)设函数,求证:当时, 在上存在极小值.