【题目】为了解学生寒假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表:
本数 | 0 | 1 | 2 | 3 | 4 | 5 |
男生 | 0 | 1 | 4 | 3 | 2 | 2 |
女生 | 0 | 0 | 1 | 3 | 3 | 1 |
(I)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率;
(II)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为 X,求随机变量 X的分布列和数学期望;
(III)试判断男学生阅读名著本数的方差
与女学生阅读名著本数的方差
的大小(只需写出结论).
【题目】随着网络时代的进步,流量成为手机的附带品,人们可以利用手机随时随地的浏览网页,聊天,看视频,因此,社会上产生了很多低头族.某研究人员对该地区18∽50岁的5000名居民在月流量的使用情况上做出调查,所得结果统计如下图所示:
![]()
(Ⅰ)以频率估计概率,若在该地区任取3位居民,其中恰有
位居民的月流量的使用情况
在300M∽400M之间,求
的期望
;
(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)经过数据分析,在一定的范围内,流量套餐的打折情况
与其日销售份数
成线性相关
关系,该研究人员将流量套餐的打折情况
与其日销售份数
的结果统计如下表所示:
折扣 | 1折 | 2折 | 3折 | 4折 | 5折 |
销售份数 | 50 | 85 | 115 | 140 | 160 |
试建立
关于
的的回归方程.
附注:回归方程
中斜率和截距的最小二乘估计公式分别为:
, ![]()
【题目】在某测试中,卷面满分为100分,60分为及格,为了调查午休对本次测试前两个月复习效果的影响,特对复习中进行午休和不进行午休的考生进行了测试成绩的统计,数据如下表所示:
分数段 | 29~ 40 | 41~ 50 | 51~ 60 | 61~ 70 | 71~ 80 | 81~ 90 | 91~ 100 |
午休考 生人数 | 23 | 47 | 30 | 21 | 14 | 31 | 14 |
不午休 考生人数 | 17 | 51 | 67 | 15 | 30 | 17 | 3 |
(1)根据上述表格完成列联表:
及格人数 | 不及格人数 | 总计 | |
午休 | |||
不午休 | |||
总计 |
(2)根据列联表可以得出什么样的结论?对今后的复习有什么指导意义?