题目内容

【题目】为了解学生寒假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表:

本数
人数
性别

0

1

2

3

4

5

男生

0

1

4

3

2

2

女生

0

0

1

3

3

1

(I)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率;
(II)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为 X,求随机变量 X的分布列和数学期望;
(III)试判断男学生阅读名著本数的方差 与女学生阅读名著本数的方差 的大小(只需写出结论).

【答案】解:(I)全班有12个男生,8个女生,
所以男、女各选1人的方法数m=12×8=96
而这两名学生阅读名著本数之和为4的方法数n=1×3+4×1=7,
所以这两名学生阅读名著本数之和为4的概率为p=
(II)由已知随机变量 X的可能的取值有0,1,2,3,4,





∴X的分布列为:

X

0

1

2

3

4

P

∴X的数学期望为
(III)
【解析】(I)全班有12个男生,8个女生,由此求出男、女各选1人的方法数,再求出这两名学生阅读名著本数之和为4的方法数,由此能求出这两名学生阅读名著本数之和为4的概率.(II)由已知随机变量 X的可能的取值有0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.(III)利用调查表能判断男学生阅读名著本数的方差 与女学生阅读名著本数的方差 的大小.
【考点精析】本题主要考查了极差、方差与标准差和离散型随机变量及其分布列的相关知识点,需要掌握标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差;在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网