【题目】如图,四边形中,,,,,,分别在,上,,现将四边形沿折起,使平面平面.
(Ⅰ)若,在折叠后的线段上是否存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由;
(Ⅱ)求三棱锥的体积的最大值.
【题目】下列命题正确的是( )
A. 若两条直线和同一个平面所成的角相等,则这两条直线平行
B. 若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C. 若两个平面都垂直于第三个平面,则这两个平面平行
D. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
【题目】已知函数().
(1)当时,求函数在上的最大值和最小值;
(2)当时,是否存在正实数,当(是自然对数底数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cos,直线l的参数方程为 (t为参数),直线l与圆C交于A,B两点,P是圆C上不同于A,B的任意一点.
(1)求圆心的极坐标;
(2)求△PAB面积的最大值.
【题目】如图,, 两个小岛相距海里,岛在岛的正南方,现在甲船从岛出发,以海里/时的速度向岛行驶,而乙船同时以海里/时的速度离开岛向南偏东方向行驶,行驶多少时间后,两船相距最近?并求出两船的最近距离.
【题目】四边形的顶点, , , , 为坐标原点.
()此四边形是否有外接圆,若有,求出外接圆的方程;若没有,请说明理由.
()记的外接圆为,过上的点作圆的切线,设与轴、轴的正半轴分别交于点、,求面积的最小值.
【题目】如图,正方形和四边形所在的平面互相垂直. , , .
()求证: 平面.
()在直线上是否存在点,使得平面?并说明理由.
【题目】矩形中, , 边所在直线的方程为,点在边所在直线上.
()求边所在直线的方程.
()求矩形外接圆的方程.
()若过点作题()中的圆的切线,求切线的方程.
【题目】如图所示,已知多面体中,四边形为矩形, , ,平面平面, 、分别为、的中点.
()求证: .
()若过的平面交于点,交于,求证: .
【题目】直线l:ax+ y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D.给出下列命题:p:a>0,S△AOB= ,q:a>0,|AB|<|CD|.则下面命题正确的是( )A.p∧qB.¬p∧¬qC.p∧¬qD.¬p∧q