题目内容
【题目】下列命题正确的是( )
A. 若两条直线和同一个平面所成的角相等,则这两条直线平行
B. 若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C. 若两个平面都垂直于第三个平面,则这两个平面平行
D. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
【答案】D
【解析】分析:先举反例说明A,B,C不成立,再利用线面平行判定定理与性质定理说明D正确.
详解:因为两条相交直线和同一个平面所成的角也可相等,所以A错,
一个平面内有三个点到另一个平面的距离相等,因为这三点可分布在另一个平面两侧,即这两个平面可相交,B错,
因为两个相交平面可同时垂直于第三个平面,所以C错,
若一条直线平行于两个相交平面,过该直线作平面与两个相交平面分别相交于,则该直线与平行,即相互平行,即平行所在平面,因此与两个相交平面的交线平行,即得这条直线与这两个平面的交线平行,所以选D.
练习册系列答案
相关题目