【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为(升),记该潜水员在此次考察活动中的总用氧量为(升).
(1)求关于的函数关系式;
(2)若,求当下潜速度取什么值时,总用氧量最少.
【题目】定义在R上的函数f(x)满足f(x)=f(x+4),当2≤x≤6时, ,f(4)=31.
(1)求m,n的值;
(2)比较f(log3m)与f(log3n)的大小.
【题目】某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:R(x)=其中x是仪器的月产量.当月产量为何值时,公司所获得利润最大?最大利润是多少?
【题目】已知函数.
(1)求曲线在点处的切线方程;
(2)若且,.
(i)求实数的最大值;
(ii)证明不等式:.
【题目】已知函数为正常数.
⑴若,且,求函数的单调增区间;
⑵在⑴中当时,函数的图象上任意不同的两点,线段的中点为,记直线的斜率为,试证明: .
⑶若,且对任意的, ,都有,求的取值范围.
【题目】下列是关于函数y=f(x),x∈[a,b]的几个命题:
①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;
②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;
③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;
④用二分法求方程的根时,得到的都是近似值.
那么以上叙述中,正确的个数为 ( )
A. 0 B. 1 C. 3 D. 4
【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为(升).
(2)若 ,求当下潜速度取什么值时,总用氧量最少.
【题目】已知椭圆的中心在坐标原点,长轴在轴上,分别在其左、右焦点,在椭圆上任意一点,且的最大值为1,最小值为.
(1)求椭圆的方程;
(2)设为椭圆的右顶点,直线是与椭圆交于两点的任意一条直线,若,证明直线过定点.
(2)若且, .
(ii)证明不等式: .
【题目】设函数f(x)的定义域为(-3,3),
满足f(-x)=-f(x),且对任意x,y,都有f(x)-f(y)=f(x-y),当x<0时,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判断f(x)的单调性,并证明;
(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.