题目内容
【题目】设函数f(x)的定义域为(-3,3),
满足f(-x)=-f(x),且对任意x,y,都有f(x)-f(y)=f(x-y),当x<0时,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判断f(x)的单调性,并证明;
(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
【答案】(1)f(2)=-4;(2)见解析;(3)(0,2].
【解析】试题分析:(1)通过赋值法,令x=2,y=1代入即得;
(2)利用单调性定义证明即可;
(3)由奇函数条件得到f(x-1)≤f(2x-3),结合单调性和定义即可解得.
试题解析:
(1)在f(x)-f(y)=f(x-y)中,
令x=2,y=1,代入得:f(2)-f(1)=f(1),所以f(2)=2f(1)=-4.
(2)f(x)在(-3,3)上单调递减.证明如下:
设-3<x1<x2<3,则x1-x2<0,
所以f(x1)-f(x2)=f(x1-x2)>0,
即f(x1)>f(x2),
所以f(x)在(-3,3)上单调递减.
(3)由g(x)≤0得f(x-1)+f(3-2x)≤0,
所以f(x-1)≤-f(3-2x).
又f(x)满足f(-x)=-f(x),
所以f(x-1)≤f(2x-3),
又f(x)在(-3,3)上单调递减,
所以解得0<x≤2,
故不等式g(x)≤0的解集是(0,2].
练习册系列答案
相关题目