9.已知集合A={x|x2-1≥0},B={x|x(x-2)<0},则A∩(∁RB)=( )
| A. | (2,+∞) | B. | (-∞,-1]∪[2,+∞) | C. | (-∞,-1]∪(2,+∞) | D. | [-1,0]∪[2,+∞) |
8.对分类变量X 与Y 的随机变量K2的观测值K,说法正确的是( )
| A. | k 越大,“X 与Y 有关系”可信程度越小 | |
| B. | k 越小,“X 与Y 有关系”可信程度越小 | |
| C. | k 越接近于0,“X 与Y 无关”程度越小 | |
| D. | k 越大,“X 与Y 无关”程度越大 |
7.
对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数;
(3)根据服务次数的频率分布直方图,求服务次数的中位数的估计值.
| 分组 | 频数 | 频率 |
| [10,15) | 10 | 0.25 |
| [15,20) | 25 | n |
| [20,25) | m | p |
| [25,30] | 2 | 0.05 |
| 合计 | M | 1 |
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数;
(3)根据服务次数的频率分布直方图,求服务次数的中位数的估计值.
6.在2017年某校的零起点小语种保送面试中,我校共获得了5个推荐名额,其中俄语2名,日语2名,西班牙语1名,并且日语和俄语都要求必须有男生参加考试.学校通过选拔定下3男2女五位英语生作为推荐对象,则不同的推荐方案共有( )
| A. | 48种 | B. | 36种 | C. | 24种 | D. | 12种 |
4.已知x与y之间的几组数据如下表:
假设根据上表数据所得线性回归方程为$\widehat{y}$=$\widehat{b}$x$+\widehat{a}$,根据中间两组数据(4,3)和(5,4)求得的直线方程为y=bx+a,则$\widehat{b}$<b,$\widehat{a}$>a.(填“>”或“<”)
附:回归直线方程$\widehat{y}$=$\widehat{b}$x$+\widehat{a}$中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$\overline{x}$.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
附:回归直线方程$\widehat{y}$=$\widehat{b}$x$+\widehat{a}$中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$\overline{x}$.
3.抛物线的准线方程是x=-$\frac{1}{2}$,则其标准方程是( )
| A. | y2=2x | B. | x2=-2y | C. | y2=-x | D. | x2=-y |
1.一中科普兴趣小组通过查阅生物科普资料统计某花卉种子的发芽率与昼夜温差之间的关系,他们分别从近十年3月份的数据中随机抽取了5天记录昼夜温差及每天30颗种子的发芽数,并列表如下:
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=832,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=615,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$$-b\overline{x}$
(1)请根据以上5组数据,求出y关于x的线性回归方程;
(2)假如现在要对(1)问中的线性回归方程的可靠性进行研究:如果由线性回归方程得到的估计数据与另外抽取的两组数据的误差的平方和不超过2,即认为此线性回归方程可靠的.如果另外随机抽取的两组数据为:温差8℃,发芽数为12和温差14℃,发芽数为18.请由此判断(1)中的线性回归方程是否可靠;(3)如果将以上5天数据中30颗种子发芽数超过15颗(包含15颗)的天数的频率作为整个2017年3月份的30颗种子发芽数超过15颗(包含15颗)的天数的概率,求从2017年3月份的1号到31号的31天中任选5天,记种子发芽数超过15颗(包含15颗)的天数为随机变量X,求X的期望和方差.
0 241318 241326 241332 241336 241342 241344 241348 241354 241356 241362 241368 241372 241374 241378 241384 241386 241392 241396 241398 241402 241404 241408 241410 241412 241413 241414 241416 241417 241418 241420 241422 241426 241428 241432 241434 241438 241444 241446 241452 241456 241458 241462 241468 241474 241476 241482 241486 241488 241494 241498 241504 241512 266669
| 日期 | 2012-3-1 | 2013-3-5 | 2008-3-15 | 2009-3-20 | 2016-3-29 |
| 温差x | 10 | 11 | 13 | 12 | 9 |
| 发芽数y | 15 | 16 | 17 | 14 | 13 |
(1)请根据以上5组数据,求出y关于x的线性回归方程;
(2)假如现在要对(1)问中的线性回归方程的可靠性进行研究:如果由线性回归方程得到的估计数据与另外抽取的两组数据的误差的平方和不超过2,即认为此线性回归方程可靠的.如果另外随机抽取的两组数据为:温差8℃,发芽数为12和温差14℃,发芽数为18.请由此判断(1)中的线性回归方程是否可靠;(3)如果将以上5天数据中30颗种子发芽数超过15颗(包含15颗)的天数的频率作为整个2017年3月份的30颗种子发芽数超过15颗(包含15颗)的天数的概率,求从2017年3月份的1号到31号的31天中任选5天,记种子发芽数超过15颗(包含15颗)的天数为随机变量X,求X的期望和方差.