19.某种产品在五个年度的广告费用支出x万元与销售额y万元的统计数据如下表:
(I)根据上表提供的数据,求出y关于x的线性回归方程;
(II)据此模型估计某年度产品的销售额欲达到108万元,那么本年度收入的广告费约为多少万元?(回归方程为y=${\;}_{b}^{∧}$x+${\;}_{a}^{∧}$其中:${\;}_{b}^{∧}$=$\frac{{\sum_{i=1}^{n}{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{∧}$-${\;}_{b}^{∧}$${\;}_{x}^{-}$)
| x | 2 | 4 | 5 | 6 | 8 |
| y | 20 | 35 | 50 | 55 | 80 |
(II)据此模型估计某年度产品的销售额欲达到108万元,那么本年度收入的广告费约为多少万元?(回归方程为y=${\;}_{b}^{∧}$x+${\;}_{a}^{∧}$其中:${\;}_{b}^{∧}$=$\frac{{\sum_{i=1}^{n}{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{∧}$-${\;}_{b}^{∧}$${\;}_{x}^{-}$)
16.已知关于x的一元二次方程x2+2bx+a2=0,若a是从区间[0,3]任取一个数,b是从区间[0,2]任取的一个数,则上述方程有实根的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
15.社会公众人物的言行一定程度上影响着年轻人的人生观、价值观.某媒体机构为了解大学生对影视、歌星以及著名主持人方面的新闻(简称:“星闻”)的关注情况,随机调查了某大学的200位大学生,得到信息如表:
(Ⅰ)从所抽取的200人内关注“星闻”的大学生中,再抽取三人做进一步调查,求这三人性别不全相同的概率;
(Ⅱ)是否有95%以上的把握认为“关注‘星闻’与性别有关”,并说明理由;
(Ⅲ)把以上的频率视为概率,若从该大学随机抽取4位男大学生,设这4人中关注“星闻”的人数为ξ,求ξ的分布列及数学期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},n=a+b+c+d$.
| 男大学生 | 女大学生 | |
| 不关注“星闻” | 80 | 40 |
| 关注“星闻” | 40 | 40 |
(Ⅱ)是否有95%以上的把握认为“关注‘星闻’与性别有关”,并说明理由;
(Ⅲ)把以上的频率视为概率,若从该大学随机抽取4位男大学生,设这4人中关注“星闻”的人数为ξ,求ξ的分布列及数学期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},n=a+b+c+d$.
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
13.函数f(x)=ax-1-2(a>0,a≠1)的图象恒过定点A,若点A在直线mx-ny-1=0上,其中m>0,n>0,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为( )
| A. | 4 | B. | 5 | C. | 7 | D. | 3+2$\sqrt{2}$ |
11.已知抛物线y2=x的焦点是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1的一个焦点,则椭圆的离心率为( )
| A. | $\frac{\sqrt{37}}{37}$ | B. | $\frac{\sqrt{13}}{13}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{7}$ |
10.已知直三棱柱ABC-A1B1C1中,AB=3,BC=AA1=2,∠ABC=$\frac{π}{3}$,则异面直线B1A与C1B所成角的余弦值为( )
0 240906 240914 240920 240924 240930 240932 240936 240942 240944 240950 240956 240960 240962 240966 240972 240974 240980 240984 240986 240990 240992 240996 240998 241000 241001 241002 241004 241005 241006 241008 241010 241014 241016 241020 241022 241026 241032 241034 241040 241044 241046 241050 241056 241062 241064 241070 241074 241076 241082 241086 241092 241100 266669
| A. | $\frac{\sqrt{13}}{13}$ | B. | $\frac{\sqrt{13}}{26}$ | C. | $\frac{\sqrt{13}}{52}$ | D. | $\frac{\sqrt{26}}{52}$ |