19.某研究中心计划研究S市中学生的视力情况是否存在区域差异和年级差异.由数据库知S市城区和郊区的中学生人数,如表1.
表1 S市中学生人数统计
现用分层抽样的方法从全市中学生中抽取总量百分之一的样本,进行了调查,得到近视的学生人数如表2.
表2 S市抽样样本中近视人数统计
(Ⅰ)请你用独立性检验方法来研究高二(11年级)学生的视力情况是否存在城乡差异,填写2×2列联表,并判断能否在犯错误概率不超过5%的前提下认定“学生的近视情况与地区有关”.
附:
独立性检验公式为:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅱ)请你选择合适的角度,处理表1和表2的数据,列出所需的数据表,画出散点图,并根据散点图判断城区中学生的近视情况与年级是成正相关还是负相关.
表1 S市中学生人数统计
人数 年级 区域 | 7 | 8 | 9 | 10 | 11 | 12 |
| 城区 | 30000 | 24000 | 20000 | 16000 | 12500 | 10000 |
| 郊区 | 5000 | 4400 | 4000 | 2300 | 2200 | 1800 |
表2 S市抽样样本中近视人数统计
人数 年级 区域 | 7 | 8 | 9 | 10 | 11 | 12 |
| 城区 | 75 | 72 | 76 | 72 | 75 | 74 |
| 郊区 | 10 | 9 | 15 | 8 | 9 | 11 |
附:
| P(K2≥k0) | 0.5 | 0.4 | 0.25 | 0.15 | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅱ)请你选择合适的角度,处理表1和表2的数据,列出所需的数据表,画出散点图,并根据散点图判断城区中学生的近视情况与年级是成正相关还是负相关.
13.若a=log30.6,b=30.6,c=0.63,则( )
| A. | c>a>b | B. | a>b>c | C. | b>c>a | D. | a>c>b |
12.函数f(x)=$\sqrt{27-{3}^{x}}$+log2(x+2)的定义域为( )
| A. | (-2,3) | B. | (-2,3] | C. | (0,3) | D. | (0,3] |
11.命题“?x∈R,x2+1>0”的否定是( )
0 240738 240746 240752 240756 240762 240764 240768 240774 240776 240782 240788 240792 240794 240798 240804 240806 240812 240816 240818 240822 240824 240828 240830 240832 240833 240834 240836 240837 240838 240840 240842 240846 240848 240852 240854 240858 240864 240866 240872 240876 240878 240882 240888 240894 240896 240902 240906 240908 240914 240918 240924 240932 266669
| A. | ?x∈R,x2+1<0 | B. | ?x∈R,x2+1≤0 | C. | ?x∈R,x2+1≤0 | D. | ?x∈R,x2+1<0 |