5.若圆(x-1)2+(y+1)2=r2上有且只有两个点到直线x-y+1=0的距离等于$\frac{{\sqrt{2}}}{2}$,则半径r的取值范围是( )
| A. | $(\sqrt{2},2\sqrt{2}]$ | B. | $(\sqrt{2},2\sqrt{2})$ | C. | $[\sqrt{2},2\sqrt{2})$ | D. | $[\sqrt{2},2\sqrt{2}]$ |
3.已知函数$f(x)={e^{\frac{x}{2}}}$,g(x)=2+lnx,若对任意的实数a,存在实数b∈(0,+∞),使得f(a)=g(b),则b-a的最小值为( )
| A. | 1-2ln2 | B. | -ln2 | C. | ln2 | D. | 0 |
2.已知条件$p:{2^x}>\frac{1}{2}$,条件$q:\frac{x-3}{x-1}<0$,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | C. | 充要条件 | D. | 既不充分也不必 |
1.直线3x+4y+12=0与圆(x+1)2+(y+1)2=9的位置关系是( )
| A. | 过圆心 | B. | 相切 | C. | 相离 | D. | 相交 |
20.
水平放置的△ABC,用斜二测画法作出的直观图是如图所示的△A'B'C',其中O'A'=O'B'=2,$O'C'=\sqrt{3}$,则△ABC绕AB所在直线旋转一周后形成的几何体的表面积为( )
| A. | $8\sqrt{3}π$ | B. | $16\sqrt{3}π$ | C. | $({8\sqrt{3}+3})π$ | D. | $({16\sqrt{3}+12})π$ |
19.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
| 喜欢甜品 | 不喜欢甜品 | 合 计 | |
| 南方学生 | 60 | 20 | 80 |
| 北方学生 | 10 | 10 | 20 |
| 合 计 | 70 | 30 | 100 |
| P(K2≥k0) | 0.100 | 0.050 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
17.定义在R上的奇函数f(x)对任意x1,x2(x1≠x2)都有(x1-x2)[f(x1)-f(x2)]<0,若正实数a使得不等式f(a2ea-a2)+f(ba3)<0恒成立,则b的取值范围是( )
0 240675 240683 240689 240693 240699 240701 240705 240711 240713 240719 240725 240729 240731 240735 240741 240743 240749 240753 240755 240759 240761 240765 240767 240769 240770 240771 240773 240774 240775 240777 240779 240783 240785 240789 240791 240795 240801 240803 240809 240813 240815 240819 240825 240831 240833 240839 240843 240845 240851 240855 240861 240869 266669
| A. | [-1,+∞) | B. | [-e,+∞) | C. | [-1,e] | D. | (-∞,1] |