7.已知中心在原点的椭圆C的右焦点为(1,0),一个顶点为$(0,\sqrt{3})$,若在此椭圆上存在不同两点关于直线y=2x+m对称,则m的取值范围是( )
| A. | ($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$) | B. | ($-\frac{{2\sqrt{13}}}{13},\frac{{2\sqrt{13}}}{13}$) | C. | ($-\frac{1}{2},\frac{1}{2}$) | D. | ($-\frac{{\sqrt{15}}}{13},\frac{{\sqrt{15}}}{13}$) |
6.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,E、F分别为BC、CC1的中点,则直线EF与平面BB1D1D所成角的正弦值为( )
| A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{15}}}{5}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
5.已知空间四边形ABCD的每条边和对角线的长都等于1,点E、F分别是AB、AD的中点,则$\overrightarrow{ED}•\overrightarrow{FC}$等于( )
| A. | $\frac{1}{8}$ | B. | $-\frac{1}{8}$ | C. | $\frac{{\sqrt{3}}}{8}$ | D. | $-\frac{{\sqrt{3}}}{8}$ |
4.过双曲线的一个焦点F2作垂直于实轴的弦PQ,F1是另一焦点,若△PF1Q是等腰直角三角形,则双曲线的离心率e等于( )
| A. | $\sqrt{2}-1$ | B. | $\sqrt{2}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{2}+2$ |
3.抛物线顶点在原点,焦点在y轴上,其上一点P(m,-1)到焦点距离为5,则抛物线的标准方程为( )
| A. | x2=8y | B. | x2=-8y | C. | x2=16y | D. | x2=-16y |
2.在长方体ABCD-A1B1C1D1中,M为AC与BD的交点.若$\overrightarrow{{A_1}{B_1}}$=$\overrightarrow a$,$\overrightarrow{{A_1}{D_1}}$=$\overrightarrow b$,$\overrightarrow{{A_1}A}$=$\overrightarrow c$,则下列向量中与$\overrightarrow{{A_1}M}$相等的向量是( )
0 240574 240582 240588 240592 240598 240600 240604 240610 240612 240618 240624 240628 240630 240634 240640 240642 240648 240652 240654 240658 240660 240664 240666 240668 240669 240670 240672 240673 240674 240676 240678 240682 240684 240688 240690 240694 240700 240702 240708 240712 240714 240718 240724 240730 240732 240738 240742 240744 240750 240754 240760 240768 266669
| A. | -$\frac{1}{2}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ | B. | $\frac{1}{2}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ | C. | $\frac{1}{2}$$\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ | D. | -$\frac{1}{2}$$\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ |