3.大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如表所示:
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.
| 月份i | 7 | 8 | 9 | 10 | 11 | 12 |
| 销售单价xi(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
| 销售量yi(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.
2.已知函数$f(x)=\left\{{\begin{array}{l}{ln({x+1})({x>0})}\\{\frac{1}{2}x+1({x≤0})}\end{array}}\right.$,如果存在实数s,t,其中s<t,使得f(s)=f(t),则t-s的取值范围是( )
| A. | [3-2ln2,2) | B. | [3-2ln2,e-1] | C. | [e-1,2] | D. | [0,e+1) |
18.已知A是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点,F1,F2分别为左、右焦点,P为双曲线上一点,G是△F1PF2的重心,若$\overrightarrow{GA}$=λ$\overrightarrow{P{F}_{1}}$,|$\overrightarrow{GA}$|=$\frac{5}{3}$,|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=8,则双曲线的标准方程为( )
| A. | x2-$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{16}$-y2=1 | C. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}$=1 | D. | x2-$\frac{{y}^{2}}{4}$=1 |
17.已知奇函数y=f(x),x∈R,a=${∫}_{-2}^{2}$[f(x)+$\frac{3}{8}$x2]dx,则二项式($\frac{x}{2}$-$\frac{a}{{x}^{2}}$)9的展开式的常数项为( )
| A. | -$\frac{21}{2}$ | B. | -$\frac{5}{4}$ | C. | -1 | D. | -$\frac{15}{8}$ |
16.
在如图所示的矩形中随机投掷30000个点,则落在曲线C下方(曲线C为正态分布N(1,1)的正态曲线)的点的个数的估计值为( )
0 240348 240356 240362 240366 240372 240374 240378 240384 240386 240392 240398 240402 240404 240408 240414 240416 240422 240426 240428 240432 240434 240438 240440 240442 240443 240444 240446 240447 240448 240450 240452 240456 240458 240462 240464 240468 240474 240476 240482 240486 240488 240492 240498 240504 240506 240512 240516 240518 240524 240528 240534 240542 266669
| A. | 4985 | B. | 8185 | C. | 9970 | D. | 24555 |