题目内容

18.已知A是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点,F1,F2分别为左、右焦点,P为双曲线上一点,G是△F1PF2的重心,若$\overrightarrow{GA}$=λ$\overrightarrow{P{F}_{1}}$,|$\overrightarrow{GA}$|=$\frac{5}{3}$,|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=8,则双曲线的标准方程为(  )
A.x2-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{16}$-y2=1C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}$=1D.x2-$\frac{{y}^{2}}{4}$=1

分析 由题意,PG=2GO,GA∥PF1,可得2OA=AF1,求得c=3a,再由条件和双曲线的定义,可得a,b,即可求出双曲线的方程.

解答 解:由题意,G是△F1PF2的重心,若$\overrightarrow{GA}$=λ$\overrightarrow{P{F}_{1}}$,
可得PG=2GO,GA∥PF1
∴2OA=AF1
∴2a=c-a,∴c=3a,
∴b=$\sqrt{{c}^{2}-{a}^{2}}$=2$\sqrt{2}$a,
|$\overrightarrow{GA}$|=$\frac{5}{3}$,|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=8,
可得|$\overrightarrow{P{F}_{1}}$|=3×$\frac{5}{3}$=5,
|$\overrightarrow{P{F}_{2}}$|=8-5=3,
可得2a=|PF1-PF2|=|5-3|=2,
解得a=1,b=2$\sqrt{2}$,
则双曲线的方程为x2-$\frac{{y}^{2}}{8}$=1.
故选:A.

点评 本题考查双曲线的标准方程的求法,注意运用三角形的重心的性质和双曲线的定义,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网