2.
如图阴影部分是由曲线y=2x2和x2+y2=3及x轴围成的部分封闭图形,则阴影部分的面积为( )
| A. | $\frac{π}{2}-\frac{{\sqrt{3}}}{8}$ | B. | $\frac{π}{2}-\frac{{3\sqrt{3}}}{8}$ | C. | $\frac{3π}{2}-\frac{{\sqrt{3}}}{8}$ | D. | $\frac{3π}{2}-\frac{{3\sqrt{3}}}{8}$ |
1.函数f(x)=x2-4ln(x+1)的单调递减区间是( )
| A. | (-∞,-2) | B. | (-1,1) | C. | (-2,1) | D. | (1,+∞) |
20.已知直线且l:mx+y+3m-$\sqrt{3}$=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2$\sqrt{3}$,则|CD|=( )
| A. | 4 | B. | 6 | C. | 2$\sqrt{3}$ | D. | 2$\sqrt{2}$ |
18.若sinx+cosx=$\frac{1}{5}$,0<x<π,则tanx的值是( )
| A. | $\frac{4}{3}或-\frac{4}{3}$ | B. | -$\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}或-\frac{3}{4}$ |
16.某市春节期间7家超市广告费支出xi(万元)和销售额yi(万元)数据如下:
(1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)用二次函数回归模型拟合y与x的关系,可得回归方程:$\stackrel{∧}{y}$=-0.17x2+5x+20,经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为3万元时的销售额.参数数据及公式:$\overline{x}$=8,$\overline{y}$=42,$\sum_{i=1}^{7}$xiyi=2794,$\sum_{i=1}^{7}$xi2=708,
(3)用函数拟合解决实际问题,这过程通过了收集数据,画散点图,选择函数模型,求函数表达式,检验,不符合重新选择函数模型,符合实际,就用函数模型解决实际问题,写出这过程的流程图.
| 超市 | A | B | C | D | E | F | G |
| 广告费支出xi | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
| 销售额yi | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(2)用二次函数回归模型拟合y与x的关系,可得回归方程:$\stackrel{∧}{y}$=-0.17x2+5x+20,经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为3万元时的销售额.参数数据及公式:$\overline{x}$=8,$\overline{y}$=42,$\sum_{i=1}^{7}$xiyi=2794,$\sum_{i=1}^{7}$xi2=708,
(3)用函数拟合解决实际问题,这过程通过了收集数据,画散点图,选择函数模型,求函数表达式,检验,不符合重新选择函数模型,符合实际,就用函数模型解决实际问题,写出这过程的流程图.
14.若复数z=$\frac{1+i}{1-i}$,$\overline z$为z的共轭复数,则($\overline z$)5=( )
0 239980 239988 239994 239998 240004 240006 240010 240016 240018 240024 240030 240034 240036 240040 240046 240048 240054 240058 240060 240064 240066 240070 240072 240074 240075 240076 240078 240079 240080 240082 240084 240088 240090 240094 240096 240100 240106 240108 240114 240118 240120 240124 240130 240136 240138 240144 240148 240150 240156 240160 240166 240174 266669
| A. | i | B. | -i | C. | -25i | D. | 25i |