8.已知数列{an}满足:a1为正整数,an+1=$\left\{{\begin{array}{l}{\frac{a_n}{2},\;{a_n}为偶数}\\{3{a_n}+1,{a_n}为奇数}\end{array}}$,如果a1=5,则a1+a2+a3的值为( )
| A. | 29 | B. | 30 | C. | 31 | D. | 32 |
5.函数f(x)=lnx-2x的单调递增区间为( )
| A. | (-∞,2) | B. | $(-∞,\frac{1}{2})$ | C. | $(0,\frac{1}{2})$ | D. | $(\frac{1}{2},+∞)$ |
3.2016年上半年数据显示,某市空气质量在其所在省中排名倒数第三,PM10(可吸入颗粒物)和PM2.5(细颗粒物)分别排在倒数第一和倒数第四,这引起有关部门高度重视,该市采取一系列“组合拳”治理大气污染,计划到2016年底,全年优、良天数达到190天.下表是2016年9月1日到9月15日该市的空气质量指数(AQI),其中空气质量指数划分为0~50,51~100,101~150,151~200,201~300和大于300六档,对应空气质量依次为优、良、轻度污染、中度污染、重度污染、严重污染.
(1)指出这15天中PM2.5的最大值及PM10的最大值;
(2)从这15天中连续取2天,求这2天空气质量均为优、良的概率;
(3)已知2016年前8个月(每个月按30天计算)该市空气质量为优、良的天数约占55%,用9月份这15天空气质量优、良的频率作为2016年后4个月空气质量优、良的概率(不考虑其他因素),估计该市到2016年底,能否完成全年优、良天数达到190天的目标.
| 日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 | 8日 | 9日 | 10日 | 11日 | 12日 | 13日 | 14日 | 15日 |
| AQI指数 | 72 | 74 | 115 | 192 | 138 | 123 | 74 | 80 | 105 | 73 | 91 | 90 | 77 | 109 | 124 |
| PM2.5 | 36 | 29 | 76 | 112 | 89 | 85 | 40 | 32 | 59 | 35 | 45 | 59 | 53 | 79 | 89 |
| PM10 | 76 | 86 | 148 | 199 | 158 | 147 | 70 | 83 | 121 | 75 | 96 | 90 | 63 | 113 | 140 |
(2)从这15天中连续取2天,求这2天空气质量均为优、良的概率;
(3)已知2016年前8个月(每个月按30天计算)该市空气质量为优、良的天数约占55%,用9月份这15天空气质量优、良的频率作为2016年后4个月空气质量优、良的概率(不考虑其他因素),估计该市到2016年底,能否完成全年优、良天数达到190天的目标.
1.若$\frac{2+ai}{1+i}$=x+yi(a,x,y均为实数),则x-y=( )
| A. | 0 | B. | 1 | C. | 2 | D. | a |
20.某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的1%,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如表:
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为X元,求X的分布列与数学期望.
0 239733 239741 239747 239751 239757 239759 239763 239769 239771 239777 239783 239787 239789 239793 239799 239801 239807 239811 239813 239817 239819 239823 239825 239827 239828 239829 239831 239832 239833 239835 239837 239841 239843 239847 239849 239853 239859 239861 239867 239871 239873 239877 239883 239889 239891 239897 239901 239903 239909 239913 239919 239927 266669
| 理财金额 | 1万元 | 2万元 | 3万元 |
| 乙理财相应金额的概率 | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ |
| 丙理财相应金额的概率 | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{6}$ |
(2)若甲获得奖励为X元,求X的分布列与数学期望.