17.一几何体的三视图如图所示,则这个几何体的体积为( )

| A. | 32 | B. | 16 | C. | $\frac{32}{3}$ | D. | $\frac{16}{3}$ |
15.已知f(x)=cos(ωx+φ)(ω>0),f'(x)是f(x)的导函数,若f(α)=0,f'(α)>0,且f(x)在[α,π+α)上没有最小值,则ω的取值范围是( )
| A. | $(0,\frac{1}{2})$ | B. | $(0,\frac{3}{2}]$ | C. | $(1,\frac{3}{2}]$ | D. | (1,+∞) |
12.某几何体的三视图如图所示,则该几何体的体积为( )

| A. | 18+8π | B. | 24+8π | C. | 18+16π | D. | 24+16π |
11.探究函数$f(x)=2x+\frac{8}{x},x∈(0,+∞)$的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)上递减;函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)递减.
(3)思考:函数y=2x+$\frac{8}{x}$时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
0 239460 239468 239474 239478 239484 239486 239490 239496 239498 239504 239510 239514 239516 239520 239526 239528 239534 239538 239540 239544 239546 239550 239552 239554 239555 239556 239558 239559 239560 239562 239564 239568 239570 239574 239576 239580 239586 239588 239594 239598 239600 239604 239610 239616 239618 239624 239628 239630 239636 239640 239646 239654 266669
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
(1)函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)上递减;函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)递减.
(3)思考:函数y=2x+$\frac{8}{x}$时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)