10.设函数$f(x)=\left\{\begin{array}{l}{2^{-x}}-2,x≤0\\{x^{\frac{1}{2}}},x>0\end{array}\right.$,如果f(x0)>1,则x0的取值范围是( )
| A. | x0<-1或x0>1 | B. | -log23<x0<1 | C. | x0<-1 | D. | x0<-log23或x0>1 |
9.已知函数f(lgx)定义域是[0.1,100],则函数$f(\frac{x}{2})$的定义域是( )
| A. | [-1,2] | B. | [-2,4] | C. | [0.1,100] | D. | $[{-\frac{1}{2},1}]$ |
8.与直线3x-2y=0的斜率相等,且过点(-4,3)的直线方程为( )
| A. | y-3=-$\frac{3}{2}$(x+4) | B. | y+3=$\frac{3}{2}$(x-4) | C. | y-3=$\frac{3}{2}$(x+4) | D. | y+3=-$\frac{3}{2}$(x-4) |
4.设z1,z2是复数,则下列命题中的假命题是( )
0 224178 224186 224192 224196 224202 224204 224208 224214 224216 224222 224228 224232 224234 224238 224244 224246 224252 224256 224258 224262 224264 224268 224270 224272 224273 224274 224276 224277 224278 224280 224282 224286 224288 224292 224294 224298 224304 224306 224312 224316 224318 224322 224328 224334 224336 224342 224346 224348 224354 224358 224364 224372 266669
| A. | 若|z1|=|z2|,则${z_1}^2={z_2}^2$ | B. | 若${z_1}=\overline{z_2}$,则$\overline{z_1}={z_2}$ | ||
| C. | 若|z1|=|z2|,则${z_1}•\overline{z_1}={z_2}•\overline{z_2}$ | D. | 若|z1-z2|=0,则$\overline{z_1}=\overline{z_2}$ |