已知f1(x)=sinx+cosx,f2(x)=f1′(x),f3(x)=f2′(x)…fn(x)=fn-1′(x)(n∈N+,n≥2),记f1(
)+f2(
)+…+f2013(
)等于( )
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| A、1 | B、-1 | C、0 | D、-2 |
| 1 |
| 3 |
| ∫ |
-
|
A、
| ||||
B、
| ||||
C、
| ||||
D、-
|
曲线y=e-x(e为自然对数的底数)在点M(1,e-1)处的切线l与x轴、y轴所围成的三角形的面积为( )
A、
| ||
B、
| ||
| C、e | ||
| D、2e |
若图程序输出的y=3,则输入的x为( )

| A、2 | B、-2 | C、2或-2 | D、8 |
圆x2+y2-6x=0与圆x2+y2+8y+12=0的位置关系是( )
| A、相离 | B、相交 | C、外切 | D、内切 |
| π |
| 2 |
A、先把各点的横坐标缩短到原来的
| ||||
B、先把各点的横坐标伸长到原来的2倍,再向右平移
| ||||
C、先向右平移
| ||||
D、先向右平移
|
函数y=
-
,x∈[1,4]的最小值为( )
| x |
| 1 |
| x |
A、
| ||
B、-
| ||
C、
| ||
| D、0 |
已知函数f(x)是[-1,1]上的减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是( )
| A、f(sinα)>f(cosβ) |
| B、f(cosα)<f(cosβ) |
| C、f(cosα)>f(sinβ) |
| D、f(sinα)<f(sinβ) |
以下是解决数学问题的思维过程的流程图:

在此流程图中,①②两条流程线与“推理与证明”中的思维方法匹配正确的是( )
在此流程图中,①②两条流程线与“推理与证明”中的思维方法匹配正确的是( )
| A、①-综合法,②-分析法 |
| B、①-分析法,②-综合法 |
| C、①-综合法,②-反证法 |
| D、①-分析法,②-反证法 |