在数学归纳法证明“1+a+a2+…+an=
(a≠1,n∈N*)”时,验证当n=1时,等式的左边为( )
| 1-an+1 |
| 1-a |
| A、1 |
| B、1-a |
| C、1+a |
| D、1-a2 |
已知数列{an}的前n项和Sn=2n2+3n-1,则a5的值为( )
| A、20 | B、21 | C、22 | D、23 |
下面是一个2×2列联表,则a-b的值等于( )
| y1 | y2 | 总计 | |
| x1 | c | a | 69 |
| x2 | b | d | f |
| 总计 | e | 65 | 99 |
| A、45 | B、35 | C、34 | D、25 |
已知非零向量
,
,
满足
+
+
=0,向量
与
的夹角为60°,且|
|=|
|=1,则向量
与
的夹角为( )
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| b |
| a |
| b |
| a |
| c |
| A、30° | B、60° |
| C、120° | D、150° |
已知a,b,c∈R,且a+b+c=0,abc>0,则
+
+
的值( )
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| A、小于0 | B、大于0 |
| C、可能是0 | D、正负不能确定 |
某一个网站针对“是否同意恢复五一长假”进行了随机调查,在参加调查的2600名男性公民中有1600名持反对意见,在2400名女性公民中有1300人持反对意见,在运用这些数据分析说明“是否同意恢复五一长假”与性别有无关系时,比较适合的方法是( )
| A、平均数与方差 | B、独立性检验 |
| C、回归分析 | D、条件概率 |
函数f(x)=x+3,则f′(x)=( )
| A、x | B、3 | C、1 | D、4 |
在一次独立性检验中,得出2×2列联表如下:K2=
且最后发现,两个分类变量A和B没有任何关系,则a的可能值是( )
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
| A |
|
合计 | |||
| B | 200 | 800 | 1000 | ||
|
180 | a | 180+a | ||
| 合计 | 380 | 800+a | 1180+a |
| A、200 | B、720 |
| C、100 | D、180 |
若b<0<a,d<c<0,则( )
| A、ac>bd | ||||
B、
| ||||
| C、a-c>b-d | ||||
| D、a-d>b-c |
已知f(x)=2(
)x-3log2x,实数a,b,c满足f(a)•f(b)•f(c)<0(0<a<b<c),若实数x0是函数y=f(x)的一个零点,那么下列不等式中不可能成立的是( )
| 1 |
| 3 |
| A、x0<a |
| B、x0>b |
| C、x0<c |
| D、x0>c |