已知数列{an}中,a1=
,an=1-
(n≥2),则a2012=( )
| 3 |
| 5 |
| 1 |
| an-1 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|
△ABC中,BC=2,角B=
,当△ABC的面积等于
时,sinC=( )
| π |
| 3 |
| ||
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
为了得到函数y=cos(x+
)的图象,只需把余弦曲线y=cosx上的所有的点( )
| π |
| 3 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|
曲线y=
x3-2在点(1,-
) 处切线的斜率为( )
| 1 |
| 3 |
| 5 |
| 3 |
A、
| ||
| B、1 | ||
| C、-1 | ||
D、-
|
将自然数的前5个数:(1)排成1,2,3,4,5;(2)排成5,4,3,2,1;(3)排成2,1,5,3,4;(4)排成4,1,5,3,2.那么,可以叫做数列的只有( )
| A、(1) |
| B、(1),(2) |
| C、(1),(2),(3) |
| D、(1),(2),(3),(4) |
正方形ABCD的边长为3,点E在边AB上,点F在边BC上,AE=BF=1,动点P从点E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到点E时,P与正方形的边碰撞的次数为( )
| A、8 | B、6 | C、4 | D、3 |
利用回归分析的方法研究两个具有线性相关关系的变量时,下列说法中表述错误的是( )
| A、相关系数r满足|r|≤1,而且|r|越接近1,变量间的相关程度越大,|r|越接近0,变量间的相关程度越小 |
| B、可以用R2来刻画回归效果,对于已获取的样本数据,R2越小,模型的拟合效果越好 |
| C、如果残差点比较均匀地落在含有x轴的水平的带状区域内,那么选用的模型比较合适;这样的带状区域越窄,回归方程的预报精度越高 |
| D、不能期望回归方程得到的预报值就是预报变量的精确值 |
等差数列{an}的前n项和Sn满足:S13=2184,则3(a3+a5)+2(a7+a10+a13)的值是( )
| A、2013 | B、2016 |
| C、2014 | D、不确定 |
如图程序的功能是( )

| A、统计十个数据中负数的个数 |
| B、找出十个数据中的负数 |
| C、判断x的符号 |
| D、求十个数据中所有负数的和 |