搜索
如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,△ABC为等边三角形. O为AB的中点,OF⊥EC.
(Ⅰ)求证:OE⊥FC;
(Ⅱ)若FC与平面ABC所成的角为30°求二面角F-CE-B的余弦值.
学校组织学生参加模块测试,测试后随机抽查部分学生的成绩,成绩的频率分布直方图如图5,数据的分组依次为[20,40),[40,60),[60,80),[80,100],低于60分的人数是6人
(1)被抽查的学生有多少人?
(2)从被抽查低于60分的6人中随机选取2人,求这2人在同一分数组的概率.
如图,已知Rt△ABC在平面α内,D是斜边AB的中点,DE⊥α,且DE=12cm,AC=8cm,BC=6cm,求EA、EB、EC的长.
设f(x)=x
2
-(k+1)x+k
(1)若关于x的不等式f(x)<0为(1,2),求实数k的值;
(2)设k>1且k≠2,求关于x的不等式
f(x)
2-x
<0的解集.
在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,S表示三角形的面积,且sin(
π
2
+2B)+2sin(
π
2
-B)+2sin
2
B=2
(1)求角B的大小;
(2)若a=4,S=4
3
,求b的值.
已知,函数f(x)=ax
2
+bx(a,b∈R),g(x)=lnx.函数f(x)的图象能否恒在函数y=bg(x)的上方?若能,求a,b的取值范围;若不能,请说明理由.
(理科)如图,在直三棱柱ABC-A
1
B
1
C
1
中,∠ACB=
π
2
,D,E分别是AB,BB
1
的中点,且AC=BC=AA
1
=2.
(1)求直线BC
1
与A
1
D所成角的大小;
(2)求直线A
1
E与平面A
1
CD所成角的正弦值.
如图,底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE:ED=2:1,问:在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若AB=1,AD=3,CD=
2
,∠CDA=45°,若四棱锥P-ABCD的体积为
5
2
时,求直线PD与底面ABCD所成的角.
有一个正三棱柱锤A-BCD零件,P是侧面ACD上一点,在面ACD上过点P画一条与棱AB垂直的线段,怎样画法?并说明理由.
0
210100
210108
210114
210118
210124
210126
210130
210136
210138
210144
210150
210154
210156
210160
210166
210168
210174
210178
210180
210184
210186
210190
210192
210194
210195
210196
210198
210199
210200
210202
210204
210208
210210
210214
210216
210220
210226
210228
210234
210238
210240
210244
210250
210256
210258
210264
210268
210270
210276
210280
210286
210294
266669
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案