任意向量
=(a1,a2),
=(b1,b2),定义运算?:
?
=(a2b2,a1b1),下列等式中(“+”和“•”是通常的向量加法和数量积,λ∈R),不恒成立的是( )
| a |
| b |
| a |
| b |
A、
| ||||||||||||||
B、
| ||||||||||||||
C、(λ
| ||||||||||||||
D、
|
已知向量
=(x,2),
=(-1,4),且
∥
,则x=( )
| a |
| b |
| a |
| b |
A、-
| ||
B、
| ||
| C、-8 | ||
| D、8 |
设随机变量ξ~N(1,σ2),若P(0<ξ<1)=0.3,则P(ξ<2)=( )
| A、0.2 | B、0.7 |
| C、0.8 | D、0.5 |
已知点A(3,4,0)和向量
=(1,-2,1),点B(0,m,n)在yOz平面上,使向量
∥
,则点B的坐标为( )
| a |
| AB |
| a |
| A、(0,-10,3) |
| B、(0,10,-3) |
| C、(0,-2,3) |
| D、(0,2,-3) |
从1、2、3、4、5、6这六个数中,每次取出两个不同数记为a、b,则共可得到3
的不同数值的个数( )
| b |
| a |
| A、20 | B、22 | C、24 | D、28 |
甲,乙,丙,丁四位同学各自对A,B两变量的线性相关试验,并用回归分析方法分别求得相关系数r如表:
则这四位同学的试验结果能体现出A,B两变量有更强的线性相关性的是( )
| 甲 | 乙 | 丙 | 丁 | |
| r | 0.82 | 0.78 | 0.69 | 0.85 |
| A、甲 | B、乙 | C、丙 | D、丁 |
在等差数列{an}中,a14=
,a114=
,a2014=
,则ab+19bc-20ac=( )
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| A、0 | B、14 |
| C、114 | D、2014 |
对于集合{a1,a2,…,an}和常数a0,定义w=
为集合{a1,a2,…,an}相对a0的“正弦方差”,则集合{
,
,
}相对a0的“正弦方差”为( )
| sin2(a1-a0)+sin2(a2-a0)+…+sin2(an-a0) |
| n |
| π |
| 2 |
| 5π |
| 6 |
| 7π |
| 6 |
A、
| ||
B、
| ||
C、
| ||
| D、与a0有关的一个值 |
以下关于回归分析的说法中不正确的是( )
| A、R2越大,模型的拟合效果越好 |
| B、残差平方和越大,模型的拟合效果越差 |
| C、回归方程一般都有时间性 |
| D、回归方程得到的预报值就是预报变量的精确值 |
已知sinα>0,cosα<0,则角α的终边落在( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |