下列空间几何体能较合适作为平面等边三角形的类比对象的是( )
| A、正四棱锥 | B、正方体 |
| C、正四面体 | D、球 |
已知定义在R上的函数f(x)满足f(x+1)=f(3-x),(x-2)f′(x)<0,设a=f(cos2π),b=f(
),c=f(4+sin2α),则a,b,c的大小关系为( )
| 1 |
| 2 |
| A、a<b<c |
| B、c<a<b |
| C、b<c<a |
| D、c<b<a |
已知平面向量
=(1,2),
=(2,y),且
•
=0,则2
+3
=( )
| AB |
| AC |
| AB |
| AC |
| AB |
| AC |
| A、(8,1) |
| B、(8,7) |
| C、(-8,8) |
| D、(16,8) |
定义平面向量之间的一种运算“⊙”如下:对任意向量
=(x1,y1),
=(x2,y2),令
⊙
=x1y2-x2y1,则下列说法中错误的是( )
| a |
| b |
| a |
| b |
A、2
| ||||||||
B、
| ||||||||
C、|
| ||||||||
D、若
|
在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,则P到对角线BD的距离为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
以椭圆
+
=1的焦点为顶点,以椭圆的顶点为焦点的双曲线的离心率为( )
| x2 |
| 8 |
| y2 |
| 5 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
由“若a>b,则a+c>b+c”推理到“若a>b,则ac>bc”是( )
| A、归纳推理 | B、类比推理 |
| C、演绎推理 | D、不是推理 |
正方形ABCD的边长为1,则|
+
|为( )
| AB |
| AD |
| A、1 | ||
B、
| ||
| C、3 | ||
D、2
|
已知a=log23,b=log0.53,c=4-
,则a,b,c的大小关系是( )
| 1 |
| 2 |
| A、a>c>b |
| B、a<c<b |
| C、a<b<c |
| D、a>b>c |
函数f(x)=
,直线y=m与函数f(x)的图象相交于四个不同的点,从小到大,交点横坐标依次记为a,b,c,d,下列说法错误的是( )
|
| A、m∈[3,4) | ||||
| B、abcd∈[0,e4) | ||||
C、a+b+c+d∈[e5+
| ||||
| D、若关于x的方程f(x)+x=m恰有三个不同实根,则m取值唯一 |