设函数f(x)=
sin(2x+
),向左平移
个单位得到函数g(x)的图象,则( )
| 2 |
| π |
| 4 |
| π |
| 8 |
| A、g(x)是奇函数 |
| B、g(x)是偶函数 |
| C、g(x)是非奇非偶函数 |
| D、g(x)的奇偶性无法判断 |
有下列四个命题:
①|x|≠3⇒x≠3或x≠-3;
②命题“a、b都是偶数,则a+b是偶数”的逆否命题是“a+b不是偶数,则a、b都不是偶数”;
③若有命题p:7≥7,q:ln2>0,则p且q是真命题;
④若一个命题的否命题为真,则它的逆命题一定是真.
其中真命题为( )
①|x|≠3⇒x≠3或x≠-3;
②命题“a、b都是偶数,则a+b是偶数”的逆否命题是“a+b不是偶数,则a、b都不是偶数”;
③若有命题p:7≥7,q:ln2>0,则p且q是真命题;
④若一个命题的否命题为真,则它的逆命题一定是真.
其中真命题为( )
| A、①④ | B、②③ | C、②④ | D、③④ |
定义在[-1,1]上的偶函数f(x)在[-1,0]上是减函数,已知α,β是锐角三角形的两个内角,则f(sinα)与f(cosβ)的大小关系是( )
| A、f(sinα)>f(cosβ) |
| B、f(sinα)<f(cosβ) |
| C、f(sinα)=f(cosβ) |
| D、f(sinα)与f(cosβ)的大小关系不确定 |