已知函数满足.(1)求的解析式;(2)对于(1)中得到的函数,试判断是否存在,使在区间上的值域为?若存在,求出;若不存在,请说明理由.
已知函数.(1)若函数有两个零点,求的取值范围;(2)若函数在区间与上各有一个零点,求的取值范围.
某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别写出用表示和用表示的函数关系式(写出函数定义域);(2)怎样设计能使S取得最大值,最大值为多少?
噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度(分贝)由公式(为非零常数)给出,其中为声音能量.(1)当声音强度满足时,求对应的声音能量满足的等量关系式;(2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话,声音能量为时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.
设函数.(1)求函数在上的值域;(2)证明对于每一个,在上存在唯一的,使得;(3)求的值.
已知函数是奇函数.(1)求m的值:(2)设.若函数与的图象至少有一个公共点.求实数a的取值范围.
已知函数的定义域为集合.(1)若函数的定义域也为集合,的值域为,求;(2)已知,若,求实数的取值范围.
已知且,函数,,记(1)求函数的定义域及其零点;(2)若关于的方程在区间内仅有一解,求实数的取值范围.
某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价元与日销售量件之间有如下关系: