题目内容
己知数列{an}的前n项和为Sn,a1=2,当n≥2时,Sn-1+1,an,Sn+1成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
,Tn是数列{bn}的前n项和,求证Tn<
.
(1)求数列{an}的通项公式;
(2)设bn=
| 2×3n |
| Sn•Sn+1 |
| 1 |
| 2 |
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由题意知2an=Sn+Sn-1+2,从而an+1=3an,由此能求出an=2•3n-1.
(2)由(1)知Sn=
=3n-1,从而
-
=
-
=
=6n,由此利用裂项法能证明Tn<
.
(2)由(1)知Sn=
| 2(1-3n) |
| 1-3 |
| 1 |
| Sn |
| 1 |
| Sn+1 |
| 1 |
| 3n-1 |
| 1 |
| 3n+1-1 |
| 2×3n |
| SnSn+1 |
| 1 |
| 2 |
解答:
(1)解:由题意知2an=Sn-1+1+(Sn+1),
即2an=Sn+Sn-1+2,①
∴2an+1=Sn+1+Sn+2,②
②-①,得2an+1-2an=an+1+an,
∴an+1=3an,
=3=q,
在①式中,令n=2,得:
2a2=S2+S1+2=a2+2a1+2,
a2=2a1+2=2•2+2=6,
∴
=
=3=q,
an=2•3n-1.
(2)证明:由(1)知Sn=
=3n-1,
∴Sn+1=3n+1-1,
∴
-
=
-
=
=6n,
∴Tn=
-
+
-
+…+
-
=
-
=
-
=
-
<
.
即2an=Sn+Sn-1+2,①
∴2an+1=Sn+1+Sn+2,②
②-①,得2an+1-2an=an+1+an,
∴an+1=3an,
| an+1 |
| an |
在①式中,令n=2,得:
2a2=S2+S1+2=a2+2a1+2,
a2=2a1+2=2•2+2=6,
∴
| a2 |
| a1 |
| 6 |
| 2 |
an=2•3n-1.
(2)证明:由(1)知Sn=
| 2(1-3n) |
| 1-3 |
∴Sn+1=3n+1-1,
∴
| 1 |
| Sn |
| 1 |
| Sn+1 |
| 1 |
| 3n-1 |
| 1 |
| 3n+1-1 |
=
| 2×3n |
| SnSn+1 |
∴Tn=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
| 1 |
| Sn+1 |
=
| 1 |
| S1 |
| 1 |
| Sn+1 |
=
| 1 |
| 3-1 |
| 1 |
| 3n+1-1 |
=
| 1 |
| 2 |
| 1 |
| 3n+1-1 |
| 1 |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
已知函数f(x)在R上递增,若f(2-x)>f(x2),则实数x的取值范围是( )
| A、(-∞,-1)∪(2,+∞) |
| B、(-∞,-2)∪(1,+∞) |
| C、(-1,2) |
| D、(-2,1) |