题目内容

己知数列{an}的前n项和为Sn,a1=2,当n≥2时,Sn-1+1,an,Sn+1成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
3n
SnSn+1
,Tn是数列{bn}的前n项和,求证Tn
1
2
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由题意知2an=Sn+Sn-1+2,从而an+1=3an,由此能求出an=2•3n-1
(2)由(1)知Sn=
2(1-3n)
1-3
=3n-1,从而
1
Sn
-
1
Sn+1
=
1
3n-1
-
1
3n+1-1
=
3n
SnSn+1
=6n,由此利用裂项法能证明Tn
1
2
解答: (1)解:由题意知2an=Sn-1+1+(Sn+1),
即2an=Sn+Sn-1+2,①
∴2an+1=Sn+1+Sn+2,②
②-①,得2an+1-2an=an+1+an
∴an+1=3an
an+1
an
=3=q

在①式中,令n=2,得:
2a2=S2+S1+2=a2+2a1+2,
a2=2a1+2=2•2+2=6,
a2
a1
=
6
2
=3=q,
an=2•3n-1
(2)证明:由(1)知Sn=
2(1-3n)
1-3
=3n-1,
∴Sn+1=3n+1-1,
1
Sn
-
1
Sn+1
=
1
3n-1
-
1
3n+1-1

=
3n
SnSn+1
=6n,
∴Tn=
1
S1
-
1
S2
+
1
S2
-
1
S3
+…+
1
Sn
-
1
Sn+1

=
1
S1
-
1
Sn+1

=
1
3-1
-
1
3n+1-1

=
1
2
-
1
3n+1-1
1
2
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网