题目内容

已知数列{an}的前n项和Sn=an2+bn,且a1=1,a2=3.
(1)求数列{an}的通项公式;
(2)记bn=
1
anan+1
,求数列{bn}的前n项和Tn,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)由已知得数列{an}是首项为a1=1,公差为d=2的等差数列,由此求出an=2n-1.
(2)由bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用裂项求和法得Tn=
1
2
(1-
1
2n+1
)
1
2
,由Tn
m
20
对所有n∈N*都成立,得
m
20
1
2
,由此能求出最小正整数m.
解答: 解:(1)∵数列{an}的前n项和Sn=an2+bn,且a1=1,a2=3,
∴数列{an}是首项为a1=1,公差为d=2的等差数列,
∴an=1+(n-1)×2=2n-1.
(2)∵bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1
)
1
2

∵Tn
m
20
对所有n∈N*都成立,
m
20
1
2
,解得m≥10,
∴最小正整数m为10.
点评:本题考查数列的通项公式的求法,考查最小正整数m的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网