题目内容
3.设A市120急救中心与B小区之间开120急救车所用时间为X分钟(单程),所用时间只与道路通畅状况有关,取容量为50的样本进行统计,如表:| X(分钟) | 25 | 30 | 35 | 40 |
| 频数 | 6 | 19 | 15 | 10 |
(2)若A市120急救中心接到来自B小区的急救电话后准备接病人进行救护,若从小区接病人上急救车大约需要5分钟时间,求急救车从急救车中心出发接上病人返回到急救中心不超过75分钟的概率.
分析 (1)由频率估计概率X的分布列,由分布列求期望值;
(2)设X1,X2分别表示往返所需时间,明确事件是相互独立事件,根据独立事件同时发生的概率公式解答.
解答 解:(1)由频率估计概率X的分布列,
| X(分钟) | 25 | 30 | 35 | 40 |
| P | 0.12 | 0.38 | 0.3 | 0.2 |
(2)设X1,X2分别表示往返所需时间,X1,X2的取值相互独立且与X的分布列相同,
设事件M“表示病人接到急救中心所需时间不超过75分钟“,由于从小区接病人上急救车大约需要5分钟,所以事件M对应“接病人在途中所用时间不超过70分钟”,
即P($\overline{M}$)=P(X1+X2>70)=PP(X1=35,X2=40)+P(X1=40,X1=35)+P(X2=40,X2=40)
=0.3×0.2×2+0.2×0.2=0.16,
所以P(M)=1-P($\overline{M}$)=1-0.16=0.84.
点评 本题考查了随机变量的分布列、数学期望以及互斥事件、独立事件同时发生的概率公式的运用;关键是明确题意,利用公式解答.
练习册系列答案
相关题目
13.(a3-$\frac{1}{2{b}^{2}}$)8的展开式中所有项系数和是( )
| A. | 28 | B. | $\frac{1}{{2}^{8}}$ | C. | 0 | D. | 1 |
14.在△ABC中,角A,B,C的对边分别为a,b,c,若b=1,a=2c,则sinC的最大值为( )
| A. | $\frac{1}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
18.已知cos2($\frac{x}{2}$+$\frac{π}{4}$)=cos(x+$\frac{π}{6}$),则cosx等于( )
| A. | $\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
15.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N(100,σ2),已知p(80<ξ≤100)=0.35,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取( )
| A. | 5份 | B. | 10份 | C. | 15份 | D. | 20份 |
12.命题“?x∈R,x2+2x+1≥0”的否定是( )
| A. | ?x∈R,x2+2x+1<0 | B. | ?x∉R,x2+2x+1<0 | C. | ?x∉R,x2+2x+1<0 | D. | ?x∈R,x2+2x+1<0 |
13.若命题p:?x0∈[-3,3],x${\;}_{0}^{2}$+2x0+1≤0,则命题p的否定是( )
| A. | ?x0∈(-∞,-3)∪(3,+∞),x${\;}_{0}^{2}$+2x0+1≤0 | B. | ?x0∈[-3,3],x${\;}_{0}^{2}$+2x0+1≤0 | ||
| C. | ?x∈(-∞,-3)∪(3,+∞),x2+2x+1>0 | D. | ?x∈[-3,3],x2+2x+1>0 |