题目内容
15.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N(100,σ2),已知p(80<ξ≤100)=0.35,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取( )| A. | 5份 | B. | 10份 | C. | 15份 | D. | 20份 |
分析 由题意结合正态分布曲线可得120分以上的概率,乘以100可得.
解答 解:∵数学成绩ξ服从正态分布N(100,σ2),P(80<ξ≤100)=0.35,
∴P(80<ξ≤120)=2×0.35=0.70,
∴P(ξ>120)=$\frac{1}{2}$(1-0.70)=0.15,
∴100×0.15=15,
故选:C.
点评 本题考查正态分布曲线,数形结合是解决问题的关键,属基础题.
练习册系列答案
相关题目
3.设A市120急救中心与B小区之间开120急救车所用时间为X分钟(单程),所用时间只与道路通畅状况有关,取容量为50的样本进行统计,如表:
(1)求X的分布列与数学期望;
(2)若A市120急救中心接到来自B小区的急救电话后准备接病人进行救护,若从小区接病人上急救车大约需要5分钟时间,求急救车从急救车中心出发接上病人返回到急救中心不超过75分钟的概率.
| X(分钟) | 25 | 30 | 35 | 40 |
| 频数 | 6 | 19 | 15 | 10 |
(2)若A市120急救中心接到来自B小区的急救电话后准备接病人进行救护,若从小区接病人上急救车大约需要5分钟时间,求急救车从急救车中心出发接上病人返回到急救中心不超过75分钟的概率.
20.关于函数f(x)=2sin2x+2$\sqrt{3}$cos2x,下面结论正确的是( )
| A. | 在区间$[{\frac{π}{12},\frac{7π}{12}}]$单调递减 | B. | 在区间$[{\frac{π}{12},\frac{7π}{12}}]$单调递增 | ||
| C. | 在区间$[{-\frac{π}{6},\frac{π}{3}}]$单调递减 | D. | 在区间$[{-\frac{π}{6},\frac{π}{3}}]$单调递增 |
7.“a,b,c,d成等差数列”是“a+d=b+c”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
4.若函数y=kx的图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,则实数k的最大值为( )
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |