题目内容
13.若命题p:?x0∈[-3,3],x${\;}_{0}^{2}$+2x0+1≤0,则命题p的否定是( )| A. | ?x0∈(-∞,-3)∪(3,+∞),x${\;}_{0}^{2}$+2x0+1≤0 | B. | ?x0∈[-3,3],x${\;}_{0}^{2}$+2x0+1≤0 | ||
| C. | ?x∈(-∞,-3)∪(3,+∞),x2+2x+1>0 | D. | ?x∈[-3,3],x2+2x+1>0 |
分析 直接利用特称命题的否定是全称命题写出结果即可.
解答 解:因为特称命题的否定是全称命题,所以命题p:?x0∈[-3,3],x${\;}_{0}^{2}$+2x0+1≤0,则命题p的否定是:?x∈[-3,3],x2+2x+1>0.
故选:D.
点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.
练习册系列答案
相关题目
3.设A市120急救中心与B小区之间开120急救车所用时间为X分钟(单程),所用时间只与道路通畅状况有关,取容量为50的样本进行统计,如表:
(1)求X的分布列与数学期望;
(2)若A市120急救中心接到来自B小区的急救电话后准备接病人进行救护,若从小区接病人上急救车大约需要5分钟时间,求急救车从急救车中心出发接上病人返回到急救中心不超过75分钟的概率.
| X(分钟) | 25 | 30 | 35 | 40 |
| 频数 | 6 | 19 | 15 | 10 |
(2)若A市120急救中心接到来自B小区的急救电话后准备接病人进行救护,若从小区接病人上急救车大约需要5分钟时间,求急救车从急救车中心出发接上病人返回到急救中心不超过75分钟的概率.
4.若函数y=kx的图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,则实数k的最大值为( )
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |
2.若复数z=$\frac{2-i}{1+i}$,则|z|=( )
| A. | 1 | B. | $\sqrt{10}$ | C. | $\frac{{\sqrt{10}}}{2}$ | D. | 3 |