题目内容

抛一枚均匀硬币,正反每面出现的概率都是
1
2
,反复这样投掷,数列{an}定义如下:an=
1,第n次投掷出现正面
-1,第n次投掷出现反面
,若Sn=a1+a2+…+an(n∈N*),则事件“S2≠0,S8=2”的概率是(  )
A、
1
256
B、
7
32
C、
1
2
D、
13
128
考点:古典概型及其概率计算公式
专题:概率与统计
分析:事件S8=2表示反复抛掷8次硬币,其中出现正面的次数是5次,利用n次独立重复试验恰好出现k次的概率公式能够求出事件S8=2的概率,以及S2≠0,S8=2的概率.
解答: 解:事件“S2≠0,S8=2”表示前两次全正或全负,则概率为
C
3
6
•(
1
2
)8
+
C
5
6
(
1
2
)8
=
13
128

故选D.
点评:本题考查概率的性质和应用,解题时要合理地运用n次独立重复试验恰好出现k次的概率公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网