题目内容

5.已知函数f(x)=x2+mx+4.
(Ⅰ)当x∈(1,2)时,不等式f(x)<0恒成立,求实数m的取值范围;
(Ⅱ)若不等式|$\frac{f(x)-{x}^{2}}{m}$|<1的解集中的整数有且仅有1,2,求实数m的取值范围.

分析 (Ⅰ)x∈(1,2)时,不等式f(x)<0恒成立,即为$\left\{\begin{array}{l}{f(1)≤0}\\{f(2)≤0}\end{array}\right.$,解得即可,
(Ⅱ)先化简,得到|x+$\frac{4}{m}$|<1,解得-1-$\frac{4}{m}$<x<1-$\frac{4}{m}$,再根据不等式|$\frac{f(x)-{x}^{2}}{m}$|<1的解集中的整数有且仅有1,2,得到关于m的不等式组解的即可.

解答 解:(Ⅰ)x∈(1,2)时,不等式f(x)<0恒成立,
∴$\left\{\begin{array}{l}{f(1)≤0}\\{f(2)≤0}\end{array}\right.$
即$\left\{\begin{array}{l}{m+5≤0}\\{2m+4≤0}\end{array}\right.$
解得m≤-5
∴实数m的取值范围(-∞,-5],
(Ⅱ)|$\frac{f(x)-{x}^{2}}{m}$|=|x+$\frac{4}{m}$|<1,
∴-1<x+$\frac{4}{m}$<1,
∴-1-$\frac{4}{m}$<x<1-$\frac{4}{m}$,
∵不等式|$\frac{f(x)-{x}^{2}}{m}$|<1的解集中的整数有且仅有1,2,
∴0<-1-$\frac{4}{m}$≤1,且2<1-$\frac{4}{m}$≤3,
解得-4<m≤-2,
∴实数m的取值范围(-4,-2].

点评 本题考查了不等式的解法和函数的恒成立的问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网