题目内容
长为3的线段AB的端点A、B分别在x轴、y轴上移动,=2,则点C的轨迹是( )
A.线段 B.圆
C.椭圆 D.双曲线
C
已知抛物线y2=4x,过点M(0,2)的直线l与抛物线交于A、B两点,且直线l与x轴交于点C.
(1)求证:|MA|,|MC|,|MB|成等比数列;
(2)设,试问α+β是否为定值,若是,求出此定值,若不是,请说明理由.
已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有( )
A.|FP1|+|FP2|=|FP3| B.|FP1|2+|FP2|2=|FP3|2
C.2|FP2|=|FP1|+|FP3| D.|FP2|2=|FP1|·|FP3|
设平面区域D是由双曲线y2-=1的两条渐近线和抛物线y2=-8x的准线所围成的三角形(含边界与内部).若点(x,y)∈D,则x+y的最小值为( )
A.-1 B.0
C.1 D.3
若抛物线y2=4x的焦点为F,过F且斜率为1的直线交抛物线于A、B两点,动点P在曲线y2=-4x(y≥0)上,则△PAB的面积的最小值为________.
已知A、B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,P是AB的中点,则动点P的轨迹C的方程为________.
若F1,F2是椭圆+=1(a>2b>0)的两个焦点,分别过F1,F2作倾斜角为45°的两条直线与椭圆相交于四点,以该四点为顶点的四边形和以椭圆的四个顶点为顶点的四边形的面积比等于,则该椭圆的离心率为( )
A. B.
C. D.
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
如图,在斜三棱柱ABC-A1B1C1中,点O、E分别是A1C1、AA1的中点,AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)证明:OE∥平面AB1C1;
(2)求异面直线AB1与A1C所成的角;
(3)求A1C1与平面AA1B1所成角的正弦值.