题目内容
4.已知数列{an}的通项公式an=$\frac{(-1)^{n}(n+1)}{(2n-1)(2n+1)}$.(1)写出它的第10项;
(2)判断$\frac{2}{33}$是不是该数列中的项.
分析 (1)令n=10,解得即可,
(2)由条件可得n应该为偶数,假设$\frac{(-1)^{n}(n+1)}{(2n-1)(2n+1)}$=$\frac{2}{33}$,解得即可,然后加以判断.
解答 解:(1)∵数列{an}的通项公式an=$\frac{(-1)^{n}(n+1)}{(2n-1)(2n+1)}$,
∴a10=$\frac{(-1)^{10}(10+1)}{(2×10-1)(2×10+1)}$=$\frac{11}{399}$,
(2)∵$\frac{(-1)^{n}(n+1)}{(2n-1)(2n+1)}$=$\frac{2}{33}$,
∴n应该为偶数,
∴33(n+1)=2(2n-1)(2n+1),
即8n2-33n-35=0,
∴(n-5)(8n+7)=0,
解得n=5,n=-$\frac{7}{8}$,
∴$\frac{2}{33}$是不是该数列中的项.
点评 本题考查了数列的单调性、利用导数研究函数的单调性、通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.已知过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点的直线1与C交于A,B两点,且使|AB|=4a的直线1恰好有3条,则双曲线C的渐近线方程为( )
| A. | y=±$\sqrt{2}$x | B. | y=±$\frac{\sqrt{2}}{2}$x | C. | y=±2x | D. | y=±$\frac{1}{2}$x |
16.若单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$$+λ\overrightarrow{{e}_{2}}$(λ∈R),且|$\overrightarrow{a}$|=$\frac{\sqrt{3}}{2}$,则λ=( )
| A. | -$\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$-1 | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
13.设lgx=a,lgy=b,则lg$\frac{x}{{y}^{2}}$等于( )
| A. | a-2b | B. | 2a-b | C. | a+2b | D. | a-b |