题目内容

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}C}$,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

分析 由题意可知:将x=-c,代入椭圆方程可得y=±$\frac{{b}^{2}}{a}$,可设A(-c,$\frac{{b}^{2}}{a}$),C(x,y),由$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}C}$,则(2c,-$\frac{{b}^{2}}{a}$)=2(x-c,y),2c=2x-2c,-$\frac{{b}^{2}}{a}$=2y,求得x=2c,y=-$\frac{{b}^{2}}{2a}$,代入椭圆方程,由b2=a2-c2,整理得:5c2=a2,求得a=$\sqrt{5}$c,由椭圆的离心率e=$\frac{c}{a}$$\frac{\sqrt{5}}{5}$.

解答 解:由椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦点在x轴上,设椭圆的左、右焦点分别为F1(-c,0),F2(c,0),
由x=-c,代入椭圆方程可得y=±$\frac{{b}^{2}}{a}$,
可设A(-c,$\frac{{b}^{2}}{a}$),C(x,y),
由$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}C}$,
∴(2c,-$\frac{{b}^{2}}{a}$)=2(x-c,y),
即2c=2x-2c,-$\frac{{b}^{2}}{a}$=2y,
可得:x=2c,y=-$\frac{{b}^{2}}{2a}$,
代入椭圆方程可得,$\frac{4{c}^{2}}{{a}^{2}}+\frac{{b}^{2}}{4{a}^{2}}=1$,16c2+b2-4a2=0,
由b2=a2-c2,整理得:5c2=a2
∴a=$\sqrt{5}$c,
由椭圆的离心率e=$\frac{c}{a}$$\frac{\sqrt{5}}{5}$,
故选:A.

点评 本题考查椭圆的标准方程,考查椭圆的通径的应用,考查向量的坐标运算,考查椭圆的离心率公式,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网