题目内容
1.有不同颜色的四件上衣与不同颜色的三条长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数( )| A. | 7 | B. | 64 | C. | 12 | D. | 81 |
分析 当选定一件上衣时,有3种不同的穿衣方案,那么有4件上衣,让3×4即可得出.
解答 解:∵选定一件上衣时,有不同颜色的裤子3条,
∴有3种不同的穿衣方案,
∴共有3×4=12种不同的搭配方法,
故选:C.
点评 本题主要考查了事件的可能情况,解题的关键是找到所有存在的情况.
练习册系列答案
相关题目
12.下列既是奇函数,又在区间$(0,\frac{π}{2})$是增函数的是( )
| A. | y=sinx | B. | y=-sinx | C. | y=cosx | D. | y=-cosx |
10.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
若由资料知,y与x呈线性相关关系,
(1)试求线性回归方程$\left.\begin{array}{l}{∧}\\{y}\end{array}\right.$=$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$x+$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$;
(2)估计使用年限为10年时,维修费用是多少?
注:$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$=$\frac{\sum_{i-1}^{i-n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{i-n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$=$\overline{y}$-$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$$\overline{x}$.
| 使用年限x | 2 | 3 | 4 | 5 | 6 |
| 维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)试求线性回归方程$\left.\begin{array}{l}{∧}\\{y}\end{array}\right.$=$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$x+$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$;
(2)估计使用年限为10年时,维修费用是多少?
注:$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$=$\frac{\sum_{i-1}^{i-n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{i-n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$=$\overline{y}$-$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$$\overline{x}$.
11.已知数列{an}为等差数列,若a2+a3+a4=π,则cos(a1+a5)的值为( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |