题目内容
11.已知数列{an}为等差数列,若a2+a3+a4=π,则cos(a1+a5)的值为( )| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 由等差数列的性质可知a2+a3+a4=3a3=π可求a3,而cos(a1+a5)=cos2a3可求
解答 解:由等差数列的性质可知a2+a3+a4=3a3=π,
∴a3=$\frac{π}{3}$,
∴cos(a1+a5)=cos2a3=cos$\frac{2π}{3}$=-$\frac{1}{2}$,
故选:A.
点评 本题主要考查了等差数列的性质、特殊角的三角函数值的应用,属于基础试题.
练习册系列答案
相关题目
1.有不同颜色的四件上衣与不同颜色的三条长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数( )
| A. | 7 | B. | 64 | C. | 12 | D. | 81 |
2.某种产品的广告费用支出x与销售额y之间有如下的对应数据:
(1)求回归直线方程;
(2)据此估计广告费用为10时,销售收入y的值.
( 参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$)
(1)求回归直线方程;
(2)据此估计广告费用为10时,销售收入y的值.
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
16.已知全集U=R,集合A={x|-2<x<2},B={x|(1+x)(3-x)≥0},则A∩B等于( )
| A. | [-2,2) | B. | [-1,2) | C. | (-2,-1) | D. | (2,3) |