题目内容

在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE:EB=AF:FD=1:4,又H,G分别为BC,CD的中点,则(  )
A、BD∥平面EFG,且四边形EFGH是矩形
B、EF∥平面BCD,且四边形EFGH是梯形
C、HG∥平面ABD,且四边形EFGH是菱形
D、EH∥平面ADC,且四边形EFGH是平行四边形
考点:棱锥的结构特征
专题:空间位置关系与距离
分析:由已知得EF∥BD.由此能证明EF∥平面BCD.由已知条件推导出HG∥BD.HG∥EF.EF≠HG.从而得到四边形EFGH为梯形.
解答: 解:如图所示,在平面ABD内,∵AE:EB=AF:FD=1:4,
∴EF∥BD.
又BD?平面BCD,EF?平面BCD,
∴EF∥平面BCD.
又在平面BCD内,
∵H,G分别是BC,CD的中点,
∴HG∥BD.∴HG∥EF.
EF
BD
=
AE
AB
=
1
5
HG
BD
=
CH
BC
=
1
2
,∴EF≠HG.
在四边形EFGH中,EF∥HG且EF≠HG,
∴四边形EFGH为梯形.
故选:B.
点评:本题考查命题真假的判断,是基础题,解题时发注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网