题目内容
12.已知x>0,当$x+\frac{81}{x}$的值最小时x的值为9.分析 利用基本不等式的性质即可得出.
解答 解:x>0,$x+\frac{81}{x}$≥$2\sqrt{x•\frac{81}{x}}$=18,当且仅当x=9时取等号.
故答案为:9.
点评 本题考查了不等式的性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
20.已知命题p:?x∈(2,+∞),x2<2x,命题q:?x0∈R,lnx0=x0-1,则下列命题中为真命题的是( )
| A. | p∧q | B. | ?p∧q | C. | p∧?q | D. | ¬p∧¬q |
17.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.

节排器等级及利润如表格表示,其中$\frac{1}{10}<a<\frac{1}{7}$
(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;
(2)视频率分布直方图中的频率为概率,用样本估计总体,则
①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望E(ξ);
②从长期来看,骰子哪种型号的节排器平均利润较大?
节排器等级及利润如表格表示,其中$\frac{1}{10}<a<\frac{1}{7}$
| 综合得分k的范围 | 节排器等级 | 节排器利润率 |
| k≥85 | 一级品 | a |
| 75≤k<85 | 二级品 | 5a2 |
| 70≤k<75 | 三级品 | a2 |
(2)视频率分布直方图中的频率为概率,用样本估计总体,则
①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望E(ξ);
②从长期来看,骰子哪种型号的节排器平均利润较大?
4.
如图,虚线部分是平面直角坐标系四个象限的角平分线,实线部分是函数y=f(x)的部分图象,则f(x)可能是( )
| A. | x2sinx | B. | xsinx | C. | x2cosx | D. | xcosx |
1.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在区间($\frac{1}{2}$,3)上既有极大值又有极小值,则实数a的取值范围是( )
| A. | (2,+∞) | B. | [2,+∞) | C. | (2,$\frac{5}{2}$) | D. | (2,$\frac{10}{3}$) |