题目内容
若双曲线方程为x2-2y2=1,则它的左焦点的坐标为________.
已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线交抛物线于A、B两点,抛物线在A、B两点处的切线交于点M.
(1) 求证:A、M、B三点的横坐标成等差数列;
(2) 设直线MF交该抛物线于C、D两点,求四边形ACBD面积的最小值.
椭圆=1的离心率为,则k的值为________.
已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x= (a为长半轴,c为半焦距)上.
(1) 求椭圆的标准方程;
(2) 求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3) 设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.
已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1) 求椭圆方程;
(2) 若圆N与x轴相切,求圆N的方程;
(3) 设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
已知双曲线的离心率等于2,且经过点M(-2,3),求双曲线的标准方程.
若双曲线=1的离心率e=2,则m=________.
已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P为椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线=1写出具有类似特性的性质,并加以证明.
已知数列{an}满足a1=1,且4an+1-anan+1+2an=9(n∈N).
(1) 求a2,a3,a4的值;
(2) 由(1) 猜想{an}的通项公式,并给出证明.