题目内容
14.已知△ABC中,CB=4,CA=$\sqrt{3}$,∠C=30°,$则\overrightarrow{CB}•\overrightarrow{CA}$=6.分析 由题意画出图形,展开数量积公式得答案.
解答 解:如图,![]()
∵CB=4,CA=$\sqrt{3}$,∠C=30°,
∴$\overrightarrow{CB}•\overrightarrow{CA}$=$|\overrightarrow{CB}||\overrightarrow{CA}|cos30°=4×\sqrt{3}×\frac{\sqrt{3}}{2}=6$.
故答案为:6.
点评 本题考查平面向量的数量积运算,是基础的计算题.
练习册系列答案
相关题目
1.已知抛物线y2=4$\sqrt{3}$x的焦点为F,A、B为抛物线上两点,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,O为坐标原点,则△AOB的面积为( )
| A. | 8$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{3}$ |
19.已知p:3+3=5,q:5>2,则下列判断错误的是( )
| A. | “p或q”为真,“非q”为假 | B. | “p且q”为假,“非p”为假 | ||
| C. | “p且q”为假,“非p”为真 | D. | “p且q”为假,“p或q”为真 |
4.已知向量$\overrightarrow{a}$=(2,-1,3),$\overrightarrow{b}$=(-4,2,x),使$\overrightarrow{a}$⊥$\overrightarrow{b}$ 成立的x与使$\overrightarrow{a}$∥$\overrightarrow{b}$成立的x分别为( )
| A. | $\frac{10}{3}$,-6 | B. | -$\frac{10}{3}$,6 | C. | -6,$\frac{10}{3}$ | D. | 6,-$\frac{10}{3}$ |