题目内容

13.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如表:
推销员编号12345
工作年限x/年35679
推销金额y/万元23345
(1)求年推销金额y与工作年限x之间的相关系数(精确到0.01);
(2)求年推销金额y关于工作年限x的线性回归方程.
(参考数据:$\sqrt{1.04}$≈1.02.)
参考公式:线性相关系数公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
线性回归方程系数公式:$\hat y$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-bx.

分析 (1)由$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=10,$\sum_{i=1}^{n}$$({x}_{i}-\overline{x})^{2}$=20,$\sum_{i=1}^{n}$$({y}_{i}-\overline{y})^{2}$=5.2,利用r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,求年推销金额y与工作年限x之间的相关系数;
(2)求出回归方程的系数,即可求年推销金额y关于工作年限x的线性回归方程.

解答 解:(1)由$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=10,$\sum_{i=1}^{n}$$({x}_{i}-\overline{x})^{2}$=20,$\sum_{i=1}^{n}$$({y}_{i}-\overline{y})^{2}$=5.2,
可得r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$=$\frac{10}{\sqrt{104}}$≈0.98.
即年推销金额y与工作年限x之间的相关系数约为0.98.
(2)设所求的线性回归方程为y=bx+a,
则b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{10}{20}$=0.5,a=$\overline{y}$-b$\overline{x}$=0.4.
∴年推销金额y关于工作年限x的线性回归方程为y=0.5x+0.4.

点评 本题考查回归分析的初步应用,考查利用最小二乘法求线性回归方程,是一个综合题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网