题目内容
4.能够把圆O:x2+y2=16的周长和面积同时分为相等的两部分的函数称为圆O的“和谐函数”,下列函数中不是圆O的和谐函数是( )| A. | cosx | B. | $tan\frac{x}{2}$ | C. | sin3x | D. | $ln\frac{5-x}{5+x}$ |
分析 由圆O的“和谐函数”的定义,我们易分析出函数f(x)是奇函数,逐一分析四个函数的奇偶性,可得答案.
解答 解:若函数f(x)是圆O的“和谐函数”,
则函数的图象经过圆心且关于圆心对称,
由圆O:x2+y2=16的圆心为坐标原点,
故函数f(x)是奇函数,
由于A中cosx为偶函数,B,C,D均为奇函数,
故选:A.
点评 本题考查的知识点是函数的奇偶性,其中根据新定义圆O的“和谐函数”判断出满足条件的函数为奇函数是解答的关键.
练习册系列答案
相关题目
9.命题“若m>0,则方程x2+x-m=0有实根”与其逆命题分别是( )
| A. | 真命题,真命题 | B. | 真命题,假命题 | C. | 假命题,真命题 | D. | 假命题,假命题 |
16.若不等式|x-2|+|x+3|<a的解集为∅,则a的取值范围为( )
| A. | (2,+∞) | B. | [-3,+∞) | C. | (-∞,5] | D. | (-∞,-3) |
13.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如表:
(1)求年推销金额y与工作年限x之间的相关系数(精确到0.01);
(2)求年推销金额y关于工作年限x的线性回归方程.
(参考数据:$\sqrt{1.04}$≈1.02.)
参考公式:线性相关系数公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
线性回归方程系数公式:$\hat y$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-bx.
| 推销员编号 | 1 | 2 | 3 | 4 | 5 |
| 工作年限x/年 | 3 | 5 | 6 | 7 | 9 |
| 推销金额y/万元 | 2 | 3 | 3 | 4 | 5 |
(2)求年推销金额y关于工作年限x的线性回归方程.
(参考数据:$\sqrt{1.04}$≈1.02.)
参考公式:线性相关系数公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
线性回归方程系数公式:$\hat y$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-bx.
14.已知函数f(x)=2a-x2($\frac{1}{e}$≤x≤e,e为自然数对数的底数)与g(x)=2lnx的图象上存在关于x轴对称的点,则实数a的最小值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{2e^2}$-1 | C. | $\frac{1}{2e^2}$+1 | D. | $\frac{e^2}{2}$-1 |