题目内容

通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
总计
爱好402060
不爱好203050
总计6050110
能否在出错概率不超过0.010的前提下认为爱好该项运动与性别有关?
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
考点:独立性检验的应用
专题:计算题,概率与统计
分析:根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.
解答: 解:由题意知本题所给的观测值,k2=
110×(40×30-20×20)2
60×50×60×50
≈7.8
∵7.8>6.635,
∴这个结论有0.010的机会说错,
即能在出错概率不超过0.010的前提下认为爱好该项运动与性别有关.
点评:本题考查独立性检验的应用,考查对于观测值表的认识,这种题目一般运算量比较大,主要要考查运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网