题目内容

9.△ABC中,角A,B,C的对边分别为a,b,c,且满足a2+c2-b2=ac,${\overrightarrow{CA}^{\;}}{•^{\;}}\overrightarrow{AB}>0$,$b=\sqrt{3}$,则a+c的取值范围是(  )
A.(2,3)B.$(\sqrt{3},3)$C.(1,3)D.(1,3]

分析 根据a2+c2-b2=ac,代入到余弦定理中求得cosB的值,进而求得B,再确定a=2RsinA=2sinA,c=2RsinC=2sinC,结合A的范围,代入利用辅助角公式,即可得出结论

解答 解:∵a2+c2-b2=ac,b=$\sqrt{3}$,
由余弦定理可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
∵B是三角形内角,∴B=60°,sinB=$\frac{\sqrt{3}}{2}$.
∵${\overrightarrow{CA}^{\;}}{•^{\;}}\overrightarrow{AB}>0$,∴cosA<0,∴A为钝角.
由正弦定理可得a=$\frac{b}{sinB}$•sinA=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$•sinA=2sinA,
同理c=$\frac{b}{sinB}•sinC$=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$•sinC=2sinC.
三角形ABC中,B=60°,∴A+C=120°.
a+c=2sinA+2sinC=2sinA+2sin(120°-A)=3sinA+$\sqrt{3}$cosA=2$\sqrt{3}$sin(A+30°),
∵90°<A<120°,∴120°<A+30°<150°,
∴sin(A+30°)∈($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),∴2$\sqrt{3}$sin(A+30°)∈($\sqrt{3}$,3),
∴a+c的取值范围为:($\sqrt{3}$,3).
故选:B.

点评 本题主要考查了余弦定理的应用,考查三角函数的性质,考查计算能力,注意余弦定理的变形式的应用是关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网