题目内容

11.凸边形的性质:如果函数f(x)在区间D上的是凸变形,则对于区间D内的任意n个自变量x1,x2,…,xn,有$\frac{{f({x_1})+f({x_2})+…+f({x_n})}}{n}≤f(\frac{{{x_1}+{x_2}+…+{x_n}}}{n})$,当且仅当x1=x2=…=xn时等号成立,已知函数y=sinx上是凸函数,
则在△ABC中,sinA+sinB+sinC的最大值为$\frac{3\sqrt{3}}{2}$.

分析 已知f(x)=sinx在区间(0,π)上是凸函数,利用凸函数的性质可得,有$\frac{{f({x_1})+f({x_2})+…+f({x_n})}}{n}≤f(\frac{{{x_1}+{x_2}+…+{x_n}}}{n})$,变形得 sinA+sinB+sinC≤3sin$\frac{π}{3}$问题得到解决.

解答 解:∵f(x)=sinx在区间(0,π)上是凸函数,且A、B、C∈(0,π),
∴$\frac{sinA+sinB+sinC}{3}$≤sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,∴sinA+sinB+sinC≤$\frac{3\sqrt{3}}{2}$,当且仅当A=B=C=$\frac{π}{3}$时,等号成立,
∴△ABC中,sinA+sinB+sinC的最大值为$\frac{3\sqrt{3}}{2}$,
故答案为:$\frac{3\sqrt{3}}{2}$.

点评 本题主要考查新定义,凸函数的性质应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网